Quantum K-theory of Grassmannians

نویسنده

  • LEONARDO C. MIHALCEA
چکیده

We show that (equivariant) K-theoretic 3-point Gromov-Witten invariants of genus zero on a Grassmann variety are equal to triple intersections computed in the ordinary (equivariant) K-theory of a two-step flag manifold, thus generalizing an earlier result of Buch, Kresch, and Tamvakis. In the process we show that the Gromov-Witten variety of curves passing through 3 general points is irreducible and rational. Our applications include Pieri and Giambelli formulas for the quantum K-theory ring of a Grassmannian, which determine the multiplication in this ring. Our formula for Gromov-Witten invariants can be partially generalized to cominuscule homogeneous spaces by using a construction of Chaput, Manivel, and Perrin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K-theoretic J-functions of Type a Flag Varieties

The J-function in Gromov-Witten theory is a generating function for one-point genus zero Gromov-Witten invariants with descendants. Here we give formulas for the quantum K-theoretic J-functions of type A flag manifolds. As an application, we prove the quantum K-theoretic J-function version of the abelian-nonabelian correspondence for Grassmannians and products of projective space.

متن کامل

On Infinite Dimensional Grassmannians and Their Quantum Deformations

An algebraic approach is developed to define and study infinite dimensional grassmannians. Using this approach a quantum deformation is obtained for both the ind-variety union of all finite dimensional grassmannians G∞, and the Sato grassmannian ̃ UGM introduced by Sato in [Sa1], [Sa2]. They are both quantized as homogeneous spaces, that is together with a coaction of a quantum infinite dimensi...

متن کامل

Puzzles in K-homology of Grassmannians

Knutson, Tao, and Woodward [KTW04] formulated a Littlewood–Richardson rule for the cohomology ring of Grassmannians in terms of puzzles. Vakil [Vak06] and Wheeler–Zinn-Justin [WZ16] have found additional triangular puzzle pieces that allow one to express structure constants for K-theory of Grassmannians. Here we introduce two other puzzle pieces of hexagonal shape, each of which gives a Littlew...

متن کامل

Quantum Field Theory, Grassmannians, and Algebraic Curves

This paper is devoted in part to clarifying some aspects of the relation between quantum field theory and infinite Grassmannians, and in part to pointing out the existence of a close analogy between conformal field theory on Riemann surfaces and the modern theory of automorphic representations. Along the way we develop a multiplicative analog of the usual additive Ward identities of current alg...

متن کامل

A Littlewood-richardson Rule for the K-theory of Grassmannians

We prove an explicit combinatorial formula for the structure constants of the Grothendieck ring of a Grassmann variety with respect to its basis of Schubert structure sheaves. We furthermore relate K-theory of Grassmannians to a bialgebra of stable Grothendieck polynomials, which is a K-theory parallel of the ring of symmetric functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008