Quantum K-theory of Grassmannians
نویسنده
چکیده
We show that (equivariant) K-theoretic 3-point Gromov-Witten invariants of genus zero on a Grassmann variety are equal to triple intersections computed in the ordinary (equivariant) K-theory of a two-step flag manifold, thus generalizing an earlier result of Buch, Kresch, and Tamvakis. In the process we show that the Gromov-Witten variety of curves passing through 3 general points is irreducible and rational. Our applications include Pieri and Giambelli formulas for the quantum K-theory ring of a Grassmannian, which determine the multiplication in this ring. Our formula for Gromov-Witten invariants can be partially generalized to cominuscule homogeneous spaces by using a construction of Chaput, Manivel, and Perrin.
منابع مشابه
K-theoretic J-functions of Type a Flag Varieties
The J-function in Gromov-Witten theory is a generating function for one-point genus zero Gromov-Witten invariants with descendants. Here we give formulas for the quantum K-theoretic J-functions of type A flag manifolds. As an application, we prove the quantum K-theoretic J-function version of the abelian-nonabelian correspondence for Grassmannians and products of projective space.
متن کاملOn Infinite Dimensional Grassmannians and Their Quantum Deformations
An algebraic approach is developed to define and study infinite dimensional grassmannians. Using this approach a quantum deformation is obtained for both the ind-variety union of all finite dimensional grassmannians G∞, and the Sato grassmannian ̃ UGM introduced by Sato in [Sa1], [Sa2]. They are both quantized as homogeneous spaces, that is together with a coaction of a quantum infinite dimensi...
متن کاملPuzzles in K-homology of Grassmannians
Knutson, Tao, and Woodward [KTW04] formulated a Littlewood–Richardson rule for the cohomology ring of Grassmannians in terms of puzzles. Vakil [Vak06] and Wheeler–Zinn-Justin [WZ16] have found additional triangular puzzle pieces that allow one to express structure constants for K-theory of Grassmannians. Here we introduce two other puzzle pieces of hexagonal shape, each of which gives a Littlew...
متن کاملQuantum Field Theory, Grassmannians, and Algebraic Curves
This paper is devoted in part to clarifying some aspects of the relation between quantum field theory and infinite Grassmannians, and in part to pointing out the existence of a close analogy between conformal field theory on Riemann surfaces and the modern theory of automorphic representations. Along the way we develop a multiplicative analog of the usual additive Ward identities of current alg...
متن کاملA Littlewood-richardson Rule for the K-theory of Grassmannians
We prove an explicit combinatorial formula for the structure constants of the Grothendieck ring of a Grassmann variety with respect to its basis of Schubert structure sheaves. We furthermore relate K-theory of Grassmannians to a bialgebra of stable Grothendieck polynomials, which is a K-theory parallel of the ring of symmetric functions.
متن کامل